
Dynamic Organization Schemes for Cooperative Proxy Caching

Spiridon Bakiras
Dept. of Electrical & Electronic Engineering

The University of Hong Kong
Pokfulam Road, Hong Kong

sbakiras@eee.hku.hk

Thanasis Loukopoulos
Dept. of Computer Science

Hong Kong University of Science and Technology
Clearwater Bay, Hong Kong

luke@cs.ust.hk

Ishfaq Ahmad
Dept. of Computer Science & Engineering

University of Texas at Arlington
Texas, USA

iahmad@cs.ust.hk

Abstract

In a generic cooperative caching architecture, web proxies
form a mesh network. When a proxy cannot satisfy a request, it
forwards the request to the other nodes of the mesh. Since a lo-
cal cache cannot fulfill the majority of the arriving requests (typi-
cal values of the local hit ratio are about 30-50%), the volume of
queries diverted to neighboring nodes can substantially grow and
may consume considerable amount of system resources. A proxy
does not need to cooperate with every node of the mesh due to the
following reasons: (i) the traffic characteristics may be highly di-
verse; (ii) the contents of some nodes may extensively overlap; (iii)
the inter-node distance might be too large. Furthermore, organiz-
ing� proxies in a mesh topology introduces scalability problems,
since the number of queries is of the order of ��. Therefore, re-
stricting the number of neighbors for each proxy to � � � � �

will likely lead to a balanced trade-off between query overhead
and hit ratio, provided cooperation is done among useful neigh-
bors. For a number of reasons static the selection of useful neigh-
bors is not efficient. An obvious reason is that web access patterns
change dynamically. Furthermore, availability of proxies is not al-
ways globally known. This paper proposes a set of algorithms that
enable proxies to independently explore the network and choose
the � most beneficial (according to local criteria) neighbors in a
dynamic fashion. The simulation experiments illustrate that the
proposed dynamic neighbor reconfiguration schemes significantly
reduce the overhead incurred by the mesh topology while yielding
higher hit ratios compared to the static approach.

1. Introduction

A caching hierarchy is defined through parent-child and sibling
relations among the participating proxies. In the basic scheme in-
troduced by the Harvest system [3], client requests arrive at the

lowest level and cache misses are propagated to the upper levels
until the root node is reached. If the root is unable to satisfy a
request, the web server is contacted. Although hierarchies usu-
ally yield high hit ratios for the intermediate and topmost nodes,
they possess two main drawbacks: (i) the benefit (in terms of re-
sponse time) for end-users is not always possible (especially if the
topmost cache lies behind a slow link), (ii) the upper level nodes
may become overloaded. For these reasons, the number of lev-
els is commonly restricted to three, i.e., institutional, regional, and
national.

Cooperative caching (also referred to as distributed caching)
can be viewed as a step forward in an attempt to overcome the de-
ficiencies of hierarchies. In a pure distributed scheme, institutional
proxies cooperatively satisfy user requests without the presence of
regional and national caches being necessary. Hybrids between
distributed and hierarchical caching have also been proposed (e.g.,
in [13] where the hierarchy is only used for propagating metadata
information concerning content locations). Squid [16], the suc-
cessor of Harvest, provides enough versatility in the cache con-
figuration to account for hybrid architectures, and includes a ded-
icated protocol for inter-proxy querying (internet cache protocol
ICP [17]). In the basic scheme, when a miss occurs, the cache
broadcasts the query to its neighbors and retrieves the page from
the first one that replies positively. If none of the neighbors has a
cached copy, the request is forwarded either to the parent cache or
to the web server. An alternative is provided by cache digests [12],
where proxies exchange periodically their directory information in
the form of compressed hash arrays. In this way a proxy checks
the digests of its neighbors (stored locally) and forwards the re-
quest only to the neighbors that have cached the page. If possible,
a proxy should only make neighbors other nearby (in terms of net-
work latency) proxies with similar access patterns.

An optimal grouping of proxies to neighborhoods is a difficult
task for several reasons: (i) global information on cache contents
is not always available, (ii) access patterns may change and as a

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

result the neighborhood graphs may need to be updated contin-
uously, and (iii) each proxy should independently take decisions
about its neighbors in order to maximize its hit ratio. In this paper
we propose a set of distributed algorithms that dynamically group
proxies into neighborhoods. The algorithms estimate the potential
for content sharing, based solely on the information available at
each proxy. Since it is not feasible to have the knowledge about
all the participating proxies, an exploration step discovers caches
with similar access patterns.

The problem can be thought of as second level caching, where
the cached objects are the best neighbors of each proxy � and the
capacity � of the cache represents the maximum allowable number
of neighbors. When � determines that a proxy �� (not currently in
�’s neighborhood) could provide a large number of hits, it adds
�� to the list of its best neighbors by evicting the least benefi-
cial existing neighbor. We can distinguish two cases depending on
whether a proxy satisfies queries originating from non-neighbors
or not. In this paper we assume that although a proxy sends queries
only to neighboring nodes, it satisfies requests originating from ev-
ery node. This results in asymmetric neighbor relations whereby
proxy � can have �� as a neighbor without the opposite being true.

The rest of this paper is organized as follows. Section 2
presents the related work on distributed caching. Section 3 de-
scribes the caching algorithms. Section 4 illustrates the experi-
mental results, and Section 5 concludes the paper with some final
observation and a discussion about the future research directions.

2. Related Work

Several papers have focused on quantifying the potential gains
of cooperative caching. In [8] the authors analyze traces from Bell
Labs reporting that the performance improvement for an ideal dis-
tributed scheme is significant but varies a lot depending on the
day of the traces. They also observe that the cooperation of only
a small set of proxies has a significant impact on performance.
The study in [19] analyzes traces from a large number (tens of
thousands) of end-clients, and provides an analytical model to pre-
dict the system’s behavior. The authors conclude that the largest
benefit from cooperative caching is expected when the number of
clients is relatively small.

In [4], the authors estimate the average response time in hierar-
chical and distributed caching architectures. The authors conclude
that the speedup from distributed caching is higher than that of hi-
erarchical caching. In [11] the authors break the response time into
connection and transmission time. They suggest that cooperative
caching accounts for larger connection times, but smaller trans-
mission delays, since lower level links are usually not congested.
They also argue that a hybrid architecture comprising multiple
caching meshes organized hierarchically, achieves the best perfor-
mance. A hybrid architecture is also proposed by [20] with proxies
participating in a hierarchy of overlapping multicast groups.

Another important issue in distributed caching is how to lo-
cate a specific page. [13] proposes the use of hints that are simple
records of the form �object id, closest neighbor�, cacheable at
each proxy. A static hierarchy is used for hint propagation. The
approach followed in [9] is based on keeping centralized informa-
tion about the contents of all proxies. Cachemesh [15] employs

URL routing tables, maintained in a way similar to the IP routing
tables, for redirecting requests to appropriate caches. The cache
array routing protocol (CARP) [14] splits the URL space using
hash functions and allocates different portions to each proxy, tak-
ing into account their processing capacity.

Currently, the most popular system for distributed caching is
Squid [16] according to which proxies are manually configured
in fixed neighborhoods. The current version of Squid implements
cache digests [12, 6], which are compact representations of cache
contents based on Bloom filters [2]. Figure 1 illustrates a simple
example, when the cache digest is an array of� bits which are ini-
tially set to 0. When a new page � is cached, its MD5 signature
[10] is hashed using � hashing functions 	�
 � � �
 	� (each with
range �1,. . . ,��), and the bits at positions 	��� �
 � � �
 	��� �
are set to 1. In addition, there exists a second array of coun-
ters. The insertion of � will increase the counters at positions
	��� �
 � � �
 	��� �� When � is evicted from the cache, the
value of each counter in these positions is decreased by one. If
some counter becomes 0, the corresponding bit in the cache digest
is also set to 0.

h
1

(W)

h
2

(W)

h
n

(W)

W

cache digest

+1

+1

+1

counter array

1

1

1

broadcasted to neighbors kept locally

Figure 1. Example of cache digest.

The counter array is only kept at the corresponding proxy,
whereas the cache digest (bit array) is sent to all the neighbors.
When a local miss occurs at proxy �, � redirects the request to
a neighbor proxy �� that has the required page (according to the
digest of �� stored locally at �), thus avoiding the extra latency in-
troduced by ICP. In order for � to locate a page � in ��’s digest,
it only needs to check the bits at positions 	��� �
 � � �
 	��� �:
(i) If all bits are 1, � conjectures that � is in ��’s cache, although
there is a probability of a false positive. False positives occur when
multiple pages set the same bits. The trade-off between space
overhead and percentage of false positives is tuned by choosing
appropriate values for parameters � and �. (ii) If any of the bits
at positions 	��� �
 � � �
 	��� � is 0, � concludes that � is not
in ��’s cache.

Since ��’s digest is not necessarily up-to-date, a false miss may
occur if �� has cached � after it sent its digest to �. Similarly,
an outdated digest may also cause false hits, if a page that appears
in the remote digest has meanwhile been evicted from the local
cache. As shown in the simulation results of [6], cache digests
achieve significant bandwidth savings compared to ICP querying.
Furthermore, the authors observe that even with infrequent sum-
mary updates the performance loss (due to false misses or false
hits) is marginal. In particular, [6] conclude that updated digests
should be propagated to neighbors only after 1%-10% of the cache
contents change. [4] suggest that updates should happen on a daily

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

basis when the network traffic is low (e.g., during the night). Due
to the apparent benefits of summaries, we include them in our de-
sign.

In general, existing work seems to agree on the benefits from
cooperative caching. Furthermore, a number of papers [11, 20]
motivate (implicitly) the need for algorithms to perform dynamic
neighbor selection.

3. Second Level Caching

In this section we describe the proposed algorithms for neigh-
bor selection. The goal is to allow each node to dynamically up-
date its neighborhood list in order to maximize the number of hits
from other proxies. Neighboring nodes exchange their cache di-
gests so that when a miss occurs, the missing page may be ob-
tained directly. Since the most useful neighbors vary continuously
with the access patterns, the system should include a mechanism
to replace the least beneficial neighbors with new ones that may
provide more hits.

Subsequently we propose two techniques: the first one is an
adaptation of the least recently used (LRU) strategy, and the sec-
ond one extends the least frequently used (LFU) paradigm by tak-
ing into account the special characteristics of the problem.

3.1. LRU

Assume that a node � has � neighbors ��,. . . ,��. When a miss
occurs, � sends the request to one of ��,. . . ,�� that has cached the
page (according to the cache digests). If multiple neighbors can
serve the request, the one (denoted by ��� that is closer (in terms
of latency) is chosen. When �� returns the page it becomes the
most recent neighbor. In case of a false hit/positive the process is
repeated for all neighbors whose digest contains the page.

If none of the neighbors can provide the page, � sends the re-
quest to the server and at the same time initiates an exploration
process. The goal of the process is to identify other nearby prox-
ies that have the page since such proxies may be beneficial for
subsequent requests. This premise is intuitive since users usu-
ally navigate by following the links contained in a web page and
therefore it is likely that once a neighbor can provide a page it
can also satisfy subsequent requests originating from browsing its
links. The pseudo-code for the algorithm is illustrated in Figure
2. The pseudo-code distinguishes two cases: serve request, which
corresponds to the situation that a page � is requested by a client,
and process query where a query is received from another proxy.
This query can be (i) a request for a page, or (ii) an exploration
query.

The exploration process needs further elaboration. When node
� receives a client request for a page � not cached locally or in
its neighbors, it sends an exploration query to all the neighbors ��
with probability � � �. A node �� that receives an exploration
query first checks its own cache and if it contains � , it replies
directly to �. Otherwise, �� forwards the query to all neighbors
whose digest contains � , and to the remaining ones with proba-
bility �.

The forwarding process continues until the maximum number
of hops 	 is reached. Like parameter �, the value of 	 adjusts the

Algorithm Serve_Request (Page: W)

1. if W is cached locally then serve request and return

2. l=list of neighbors whose digests contain W sorted by network latency

3. while l is not empty

4. remove the closest neighbor vi from l

5. query (get_page, W, v, vi)

6. if hit then send W to client, update recency of vi and return

7. end //while

8. for each neighbor vi query(explore, W, v, vi) with prob. a

9. l2=collect-exploration-result(W,time-out) // l2 is a list of proxies that have cached W

10. let vnew be the closest node in l2

11. if latency(vnew)<latency(server) then

12. get cache digest of vnew

13. vnew becomes the most recent neighbor (possibly by evicting the least recent one)

end Serve_Request

Algorithm Process_Query (String: op_code, Page: W, Node: v (originator), Node: vi (current node))

1. CASE (op_code)

2. get_page:

3. if W in cache then send W to v and signal hit = true

4. else (W not in cache) then signal hit = false

5. explore:

6. if W in cache then notify v and return

7. if limit of hops has been reached then return

8. for each neighbor vj of vi

9. if vi’s digest contains W then query(explore, W, v, vj)

10. else // vi’s digest does not contain W

11. query (explore, W, v, vk) with prob. a

end Process_Query

Figure 2. Pseudo-code for LRU.

trade-off between the extent of exploration and traffic overhead.
The original node � accumulates responses from proxies caching
� , until a time-out period is exceeded. Then it makes as its most
recent neighbor, the proxy ���� that contains � and has the low-
est network latency. If the list of neighbors is full, the least recent
neighbor is evicted. Note that due to false misses, ���� may al-
ready be a neighbor of �, in which case ����’s digest is updated
(no neighbor is evicted). If no response arrives before the time-
out interval the recency status remains unchanged. There is no
forwarding of actual page requests since they are satisfied either
at: (i) the proxy � where they arrived, (ii) a first degree neighbor
of �, (iii) the web server. If � determines that no neighbor proxy
contains � , it sends directly the request to the appropriate server
without waiting for the results of the exploration process.

A final remark concerns with some implementation issues. For
querying, the http get method provides the functionality of the
get page op code. We can implement explore in ICP, by adding
a new op code in one of the unused slots. The payload of the new
op code should include apart from the URL, the number of hops
that the query has traveled so far and the id of the proxy where it
originated, so that the receiver can answer directly to it. The algo-
rithm also requires the proximity (latency) computation between
proxies, in order to choose the fastest neighbor (in case of multi-
ple available choices). For existing neighbors, the proximity can
be calculated by taking a weighted average of the past experienced
latency [7]. For proxies accessed (by exploration) for the first time,
the latency can be estimated by measuring the RTT using the ping
utility. In our simulations we assume that knowledge of the closest
neighbor is always available.

3.2. LFU

A potential problem with LRU is that it may impose network
overhead due to the frequent reconfiguration of the neighbors and
exchanges of digests. In addition, LRU may quickly replace some
“good” neighbors that do not provide hits for a short period of
time, although they are beneficial in the long run. The second strat-

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

egy, LFU, aims at overcoming these problems by collecting statis-
tics and performing reconfiguration if certain conditions hold.

The pseudo-code for LFU is very similar to that of Figure 2 and
thus is not included here. The algorithm keeps a hit counter at each
proxy, which maintains the positive responses (page retrievals or
exploration hits) from other proxies. Each page retrieval or explo-
ration hit received by node � increases at most one hit counter (of
the fastest node) in �, even though multiple proxies may respond.
Thus, closer neighbors are favored and the network latency is im-
plicitly included in the number of hits. Moreover, since a proxy
needs to obtain only one copy of a page (ideally the closest avail-
able) the existence of other copies yields no local benefit.

When reconfiguration is performed, the new neighborhood of
a proxy � is defined as the set of � nodes that provided the largest
number of positive responses to �. Some of these nodes may be al-
ready in the neighborhood of �, and no special action is required.
For the rest of the nodes, � requests and maintains locally their
cache digests by evicting the digests of aborted neighbors. The
exchange of digests implies that digests are usually up to date. In
some situations, however, it is possible that a proxy �� will remain
a neighbor of � for a long period of time. Special care must be
taken in order to update its digest because the methods available
for Squid are now inapplicable. Recall that in Squid all the neigh-
bors of �� obtain (simultaneously) the same version of ��’s digest.
Thus, �� can decide locally when the digest is outdated and broad-
cast the new version to all its neighbors. On the other hand, in our
methods this decision is taken asynchronously at each receiving
node (since nodes have different versions of the digest depending
on when they configured �� as a neighbor); a proxy will ask for a
new digest from a neighbor, if the percentage of false misses from
this neighbor (discovered through exploration) exceeds a thresh-
old.

An interesting issue regards the appropriate conditions for re-
configuration. At one extreme, if reconfiguration occurs after ev-
ery positive response, the strategy will transform to LRU. At the
other extreme, if reconfiguration is very infrequent, LFU will be-
have like a static scheme. In order for the statistics to be mean-
ingful, reconfiguration is initiated after a number of positive re-
sponses has been collected. Local hits, or queries that do not yield
any exploration results, do not provide any information about the
contents of other proxies; only page hits from neighbors or explo-
ration hits are useful for the computation of neighbors. When

(good values of are determined experimentally) is exceeded, a
non-neighbor �� , will replace a neighbor proxy ��, if the value of
the counter for �� is above �% of the corresponding value for ��.
If, for instance, � � ���, �� will replace ��, if it provides more
positive answers. In practice, since neighbors are favored because
they are requested first, the value of � should be lower.

Notice that since we aim at maximizing the hit ratio from other
proxies, we only take into account the number of hits and not the
page sizes. Intentionally we tried to keep the neighbor replacement
policy as simple as possible by adopting the well-known LRU and
LFU paradigms, because our goal is to demonstrate the advan-
tages of the neighbor reconfiguration concept in general, and not
of the individual policies. We also experimented with alternative
caching strategies that consider additional parameters such as de-
tailed benefit and latency measures, but found that the additional
gains (if any) are negligible.

4. Experiments

We evaluate the proposed algorithms as follows. Section 4.1
describes the traces used in all experiments. Section 4.2 compares
LRU with static Squid variants, in order to confirm the viability
of our concept. Section 4.3 measures the performance of LFU
against LRU. Section 4.4 provides some insight on the behavior of
different strategies. Finally, Section 4.5 summarizes the results.

Although the traces used originated from real proxies, we did
not have any information about the network topology. Therefore,
we assume a fully connected network where the inter-proxy (one-
way) latency follows a Gaussian distribution with mean 70ms and
standard deviation 20ms. Values below 10ms and greater than
130ms were cut off. The (one-way) latency between proxies and
web servers is fixed to 1 second in order to simulate the situa-
tion where fetching pages from proxies is much faster than do-
ing so from the servers. This assumption is valid, since (i) re-
quests for ‘local’ servers do not yield any ICP queries, and (ii)
the ICP OP SECHO opcode may be used to identify whether the
server is closer than the neighbors. As a measure of performance
we employ the number of neighbor hits, i.e., local misses served by
the (1�� degree) neighbors, because it is less sensitive than other
measures (e.g., average response time) to the (artificial) network
latencies.

For the implementation of Squid simulations we followed the
guidelines of [12]. Each proxy broadcasts a new digest version to
his neighbors whenever the cached contents change by 1%. In all
simulations, the cache for each proxy is equal to 10% of the total
size of the locally requested objects. The (local) page replacement
strategy for all proxies is LRU.

4.1. Datasets

Real Data: We collected traces from the 10 available proxies of
the National Laboratory for Applied Network Research (NLANR
[1]). These proxies are based on the Squid software and are located
throughout the United States. Their aim is to provide hierarchical
caching services to organizations and individuals. The traces de-
pict all requests between 15/11/01 and 18/11/01. We decided to
exclude the “sj” proxy from our experiments since it accounts for
very light and dissimilar workload compared to the rest. More-
over, only HTTP requests with the GET method are considered,
since only this type of requests may trigger an ICP query. URLs
containing “cgi-bin”, “.asp” and “?” substrings are excluded as
un-cacheable objects. The same is true for requests with a re-
sult code TCP CLIENT REFRESH MISS, since they account for
a no-cache pragma, control command. Finally, we deleted re-
quests for partial content (status 206) and requests that resulted
in 0 byte transfers. This methodology has been suggested in pre-
vious related work [5]. The statistics for the remaining pages are
summarized in Table 1.

Although traces from institutional proxies could be more ap-
propriate for our study, we were unable to collect a sufficient num-
ber of them. Nevertheless, we believe that recreating the behavior
of the topmost proxies in the NLANR hierarchy is still sufficient
for illustrating the main merits of the proposed strategies and pro-
viding useful insight. It is reasonable to expect similar or higher

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

startap bo2 bo1 pa sv sd uc pb rtp
Tot.Size (GB) 1.63 2.16 3.03 3.06 6.93 6.97 7.76 20.38 33.53

Reqs(Millions) 0.46 0.35 0.42 0.76 2.35 1.29 0.79 3.09 6.29
Dist. Pages (Mil.) 0.22 0.24 0.28 0.35 0.80 0.73 0.51 1.58 2.98

Avg. Pg. Size (KB) 7 9 10 9 9 10 15 13 11

Table 1. Statistics of NLANR traces.

performance gains for institutional proxies where the sharing po-
tential is higher.

Synthetic Data: In order to test how the parameters of the al-
gorithms and the network size affect performance, we created two
synthetic datasets representing requests for 45 proxies. In the first
set (SYNTH I), each of the 9 initial NLANR traces was split into
5 equal parts/proxies. Every request was sequentially assigned to
one of the 5 proxies in a round-robin way (a similar method was
followed in [18]). Thus, the proportional size differences of the
initial NLANR traces were also preserved in SYNTH I. The sec-
ond dataset (SYNTH II) was created again using the round-robin
method, but the larger proxies were split in more parts in order to
minimize the size differences of the resulting 45 proxies. Experi-
ments with SYNTH I aim at evaluating performance and scalabil-
ity in an “expanded” NLANR hierarchy. SYNTH II approximates
better the case of institutional level proxies where cache size is not
expected to vary significantly. Whenever the results are similar,
we only present SYNTH I. We were unable to follow the most
intuitive approach of splitting the requests of the initial trace ac-
cording to the origin IP since the anonymizer used by Squid (i.e.,
the process that modifies the IP before updating the log file) does
not produce consistent IPs across multiple days.

4.2. LRU vs. static methods

In this section we compare LRU against static alternatives. We
start with NLANR (9 proxies) and continue with the synthetic
datasets. The parameters of LRU are set as follows: probability to
send an exploration query to a neighbor � � ���, maximum num-
ber of hops for exploration 	 � �, number of (outgoing) neigh-
bors � � �. We measure performance in terms of neighbor hits
against two Squid configurations obtained as follows: (i) we ex-
ecuted 30 experiments using random static configurations where
each proxy has 3 outgoing neighbors and an arbitrary number of
incoming ones; (ii) for each execution we counted the total num-
ber of neighbor hits; (iii) the configuration that provided the mean
of the total hits (i.e., the 15�	 best configuration) is Squid average;
(iv) the best (of 30) configuration is Squid best. We also include
the maximum number of neighbor hits that can be obtained if all
proxies are connected (All to all). Figure 3 shows the sum of hits
of all proxies per hour (traces of 4 days – 96 hours).

LRU achieves a significant increase in the neighbor hit ratio
compared to both static schemes with the same number of neigh-
bors. This is expected since it dynamically modifies the initial
configuration according to the access patterns. Its difference from
the optimal hit ratio (All to all) is not large considering the limited
numbers of neighbors (3) and exploration hops (2). Figure 4 illus-
trates the number of digests exchanged per hour. We only include
Squid best, because all static configurations result in almost the

K

5K

10K

15K

20K

25K

1 16 31 46 61 76 91

ALL_to_ALL SQUID_Best

LRU SQUID_Avg

Hours

Neighbor Hits

Figure 3. The number of pages obtained from
neighbors.

0

400

800

1200

1600

2000

4 19 34 49 64 79 94
Hours

Digests

LRU

SQUID_bestALL_to_ALL

Figure 4. The number of digests exchanged.

same frequency of exchanges. Since in the first few hours there
exists a lot of exchanges until the caches get full, we only show
the results after the 4�	 hour.

The optimal (All to all) method is very expensive since each
proxy sends its updated digest to all the other eight proxies. Rather
surprisingly, the overhead of LRU is similar to that of static Squid.
In LRU, a digest is sent from �� to �� when (i) �� becomes a neigh-
bor of �� or (ii) �� discovers a false miss in an existing neighbor
��. In practice, the second case may be ignored since it is very in-
frequent. Therefore, essentially Figure 4 implies that the number
of exchanged digests due to neighbor changes (in LRU) is more or
less the same as the number of broadcasts in Squid (when the up-
date threshold is 1%). We will explore this point further and study
the effect of the network size in subsequent experiments with syn-
thetic datasets.

In addition to digest exchanges, LRU (and all our methods)
impose the overhead of exploration messages. Given that the size
of each message is 3-4 orders of magnitude smaller than that of a
digest (i.e., a few hundred of bytes as opposed to several hundred
of Kbytes), the bandwidth overhead of digest transfers dominates

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

5K

10K

15K

20K

25K

30K

1 16 31 46 61 76 91
Hours

Neighbor Hits

LRU

SQUID_best

Figure 5. The number of pages obtained from
neighbors (SYNTH I).

0

500

1000

1500

2000

2500

3000

3500

4000

1 16 31 46 61 76 91

Digests

LRU

SQUID_best

Hours

Figure 6. number of digests exchanged
(SYNTH I).

that of exploration messages.
Next, we use the dataset SYNTH I (45 proxies) to test the gen-

erality of the first observations. Notice that by splitting the con-
tents of a proxy in smaller parts (i.e., the process that we followed
to create the synthetic datasets) the total number of neighbor hits
will increase since some local hits (i.e., at the same proxy) will
now become neighbor hits. However, it is practically impossible to
determine the actual number of neighbor hits since the size of the
network is prohibitive for applying the All to all method. Instead,
we compare LRU (using the same values for parameters �, � and
) with the best Squid alternative obtained after executing 30 ran-
dom configurations. Figure 5 shows the results. The improvement
of LRU in this case is impressive. The small number of neighbors
with respect to the total number of proxies restricts the benefit of
static schemes, which can only search in their proximity. On the
other hand LRU, even with a limited number of exploration hops
(2), can gradually relate nodes that are several hops apart through
the intermediate proxies in their path.

Similar to Figure 4, Figure 6 compares the overhead of LRU
and Squid best in terms of the number of digest transfers. Since
the network now contains 45 proxies (as opposed to 9 in the first
experiment), the overhead of Squid best is about 5 times higher.
LRU is less sensitive to network size since the frequency of digest
exchanges also depends on the quality of the neighbors. Notice
that Squid can reduce the number of exchanges by increasing the
update threshold from 1% to a higher percentage. This, however,
would have a negative effect on the number of neighbor hits. An-
other subtle point refers to the utilization of digests. According to

-5K

-4K

-3K

-2K

-1K

K

1K

2K

3K

4K

5K

4 19 34 49 64 79 9

Hours

#LFU hits - #LRU hits

4

NLANR
SYNTH I
SYNTH II

Figure 7. The benefit of LFU in terms of neigh-
bor hits.

0

500

1000

1500

2000

2500

3000

3500

4000

4 19 34 49 64 79 9

Hours

4

NLANR
SYNTH I
SYNTH II

#LRU tranfers - #LFU trasnfers

Figure 8. The benefit of LFU in terms of digest
exchanges.

Squid a proxy will broadcast the new version of its digest to all its
neighbors even if it is not useful to them. On the other hand, all
our policies update digests on-demand; that is, new versions are
only requested by neighbors that actually use them.

Finally, we tested the effect of the various parameters (�, �

and) on the performance of LRU. The results were as expected
and thus are not included here. In particular, the neighbor hits
and the rate of digest transfers increase with the number of neigh-
bors (�) and the exploration probability (�). On the other hand,
although the exploration messages increase exponentially with the
maximum number of hops (), the page hits and digest exchanges
are not influenced considerably. This implies that if a page can
be found in the network, it probably lies in the neighborhood of
the requesting proxy and extensive exploration is not usually ben-
eficial. We also replaced SYNTH I with SYNTH II and observed
almost identical results to the ones in Figures 5 and 6, suggest-
ing that the performance of LRU depends on the total number of
potential neighbor hits rather than the structure or configuration
of individual proxies. In summary, LRU increases significantly
the number of neighbor hits, especially for large networks. An
obvious improvement over LRU concerns the reduction of digest
transfer. Towards this direction, we evaluate the performance of
LFU.

4.3. LFU vs. LRU

Here, we compare LRU and LFU. The same parameter values
are used for both methods (� � ���, � � � and 	 � �). Fur-
thermore, (number of positive responses required for reorganiza-

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

K

5K

10K

15K

20K

25K

1 16 31 46 61 76 91
Hours

Neighbor Hits

=10l

=100l
=1000l

reorganization threshold

Figure 9. The number of neighbor hits for var-
ious reorganization thresholds.

0

500

1000

1500

2000

2500

4 19 34 49 64 79 94

Hours

Digests

=10l

=100l
=1000l

reorganization threshold

Figure 10. The number of digests exchanged
for various reorganization thresholds.

tion) for LFU is set to 100, whereas � (weight factor for neighbor
responses) is set to 0.5. The first experiment in Figure 7 shows
the relative benefit of LFU for NLANR, SYNTH I and SYNTH
II. The benefit is measured as #LFU hits - #LRU hits and can be
positive or negative, depending on whether the number of hits in-
creases or decreases. LRU is better for NLANR (and to a lesser
extent for SYNTH I), while LFU is better for SYNTH II. Next we
measure the benefit of LFU in terms of digest transfers. Figure 8
illustrates #LRU transfers - #LFU transfers for NLANR, SYNTH
I and SYNTH II. The advantage of LFU is clear since it reduces
considerably the network overhead in all cases. The difference
is higher for the larger networks, indicating better scalability. A
comparison with the absolute values of LRU for NLANR (Figure
4) and SYNTH I (Figure 6) suggests savings up to 70%-80%.

The effects of the common parameters (�, � and) are similar
to LRU and not included. We only investigate the impact of the
reorganization threshold (for � ��, 100 and 1000) on SYNTH I.
The number of hits (Figure 9) is optimized for �100. If �10,
LFU does not have enough statistics to select “good” neighbors,
whereas if �1000, LFU cannot follow closely the changing re-
quest patterns. The network overhead caused by digest exchanges
(Figure 10) is inversely proportional to the value of . In general,
the proper tuning of is crucial for achieving good performance,
while maintaining low overhead. An optimal value of is difficult
to compute, since in addition to the traces, it depends on the proxy
configuration and the values of the other LFU parameters.

In summary, LFU with appropriate parameter tuning is superior
to LRU since it achieves a similar number of neighbor hits with a
significantly lower overhead.

4.4. Sharing behavior

In this section, we explore the content sharing patterns imposed
by the various alternatives. In particular we choose one of the
proxies (bo2) and illustrate in Figure 11 the number of pages sent
to or received from other proxies depending on the caching policy.
Notice that the proxies on the �-axis are sorted according to their
cache size (which is set to 10% of the total size of the locally
requested objects). Bo2 is the second smallest proxy after startap.

With LRU (left diagram) bo2 only receives pages without ser-
vicing any requests. Moreover, most of these pages come from
large proxies. This actually is a common pattern for all small prox-
ies: they attach themselves to some large cache and remain there
most of the time. In this case, the neighbors of bo2 are: bo1 (which
as will see has very similar contents with bo2) and the four largest
proxies in the network. This situation is not desirable since it may
lead to over-congestion of the popular nodes.

LFU (lower left diagram) on the other hand, achieves some
kind of load balancing since bo2 exchanges pages with all prox-
ies. The explanation is that when bo2 joins the neighborhood of
another proxy, it will remain there until the next reorganization
phase. During this period it serves requests from the other proxy,
thus the number of pages sent to other nodes is increased with re-
spect to LRU.

4.5. Summary

The overall conclusion is that the dynamic neighbor reconfigu-
ration caching strategies achieve better performance compared to
static approaches in terms of both neighbor hits and traffic over-
head. Specifically, LRU closely follows the changes in access pat-
terns by frequently changing the neighborhood list. It achieves a
near-optimal hit ratio with a significantly smaller number of neigh-
bors compared to a full mesh topology (i.e., lower cost). LFU, on
the other hand, changes the neighborhood list periodically, based
on the collection of statistics during the reconfiguration period.
The result is a considerably lower amount of overhead traffic, and
savings up to 80% (compared to LRU) were observed. Further-
more, LFU performs slightly better in terms of neighbor hits, when
the selection of ‘good’ neighbors is not very clear.

5. Conclusions

In this paper we presented algorithms that dynamically orga-
nize proxies into neighborhoods. Our solution is based on treat-
ing the problem as second level caching. Simulation results in-
dicate that LRU and LFU achieve higher hit ratios compared to
their static counterparts in all experimental datasets. Even in small
network instances, where an all-to-all neighbor configuration is
feasible, our methods are still useful as they achieve comparable
performance at only a fraction of the bandwidth overhead. Fur-
thermore, the second level caching formulation provides a simple
framework that permits the application of previous results to this

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

LRU

0

5000

10000

15000

20000

STARTAP BO1 PA SV SD UC PB RTP

Number of Pages

RECEIVED

LFU

0

5000

10000

15000

20000

25000

30000

STARTAP BO1 PA SV SD UC PB RTP

Number of Pages RECEIVED

SENT

Figure 11. Sharing patterns for BO2.

problem. A straightforward extension of this work is to exploit
other caching strategies that integrate latency, recency, frequency
of requests, etc. Such techniques could be used to minimize mea-
sures like average response time or byte hit ratio.

It is obvious that the cooperation of two proxies often involves
administrative issues. This allows us to apply our algorithms on
top of the manually predefined list of legitimate neighbor candi-
dates. Defining the optimal number of neighbors �, is not straight-
forward since it involves a trade-off between bandwidth consump-
tion and hit ratio that only an administrative entity can decide. In
this paper we assumed that � is given and remains fixed. In a par-
allel work to this one we investigate strategies where � varies de-
pending on the neighbor quality. Finally, our ongoing research in-
cludes studying the case where a proxy accepts queries only from
its neighbors. This leads to symmetric neighbor relations whereby
a proxy � makes �� a neighbor only if �� reciprocates.

Acknowledgments

The authors would like to thank Dimitris Papadias for his con-
tribution in various parts of this paper. Spiridon Bakiras is sup-
ported in part by the Areas of Excellence Scheme established un-
der the University Grants Committee of the Hong Kong Special
Administrative Region, China (Project No. AoE/E-01/99).

References

[1] National Lab of Applied Network Research, IR-
Cache project. Sanitized access logs, available at:
http://www.ircache.net/.

[2] B. Bloom. Space/time trade-offs in hash coding with allow-
able errors. Communications of the ACM, 13(7):422–426,
1970.

[3] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F.
Schwartz, and K. J. Worrell. A hierarchical internet object
cache. In Proceedings USENIX Annual Technical Confer-
ence, pages 153–164, 1996.

[4] S. G. Dykes and K. A. Robbins. A viability analysis of co-
operative proxy caching. In Proceedings IEEE INFOCOM,
pages 1205–1214, April 2001.

[5] S. G. Dykes, K. A. Robbins, and C. L. Jeffery. Uncacheable
documents and cold starts in web proxy cache simulations:
How two wrongs appear right. Technical Report CS-2001-
01, University of Texas at San Antonio, January 2001.

[6] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Sum-
mary cache: a scalable wide-area Web cache sharing proto-
col. IEEE/ACM Transactions on Networking, 8(3):281–293,
2000.

[7] M. L. Gullickson, C. E. Eiccholz, A. L. Chervenak, and
E. W. Zegura. Using experience to guide web server se-
lection. Multimedia Computing and Networking, January
1999.

[8] P. Krishnan and B. Sugla. Utility of co-operating Web
proxy caches. Computer Networks and ISDN Systems, 30(1-
7):195–203, 1998.

[9] M. Rabinovich, J. Chase, and S. Gadde. Not all hits are
created equal: cooperative proxy caching over a wide-area
network. Computer Networks and ISDN Systems, 30(22-
23):2253–2259, 1998.

[10] R. Rivest. The MD5 message-digest algorithm. Internet
RFC 1321, April 1992.

[11] P. Rodriguez, C. Spanner, and E. W. Biersack. Web caching
architectures: Hierarchical and distributed caching. In Pro-
ceedings International Web Caching Workshop, April 1999.

[12] A. Rousskov and D. Wessels. Cache digests. Computer
Networks and ISDN Systems, 30(22-23):2155–2168, 1998.

[13] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Web caching
architectures: Hierarchical and distributed caching. In Pro-
ceedings International Conference on Distributed Comput-
ing Systems, June 1999.

[14] V. Valloppillil and K. W. Ross. Cache array routing protocol
v1.0. Internet Draft, February 1998.

[15] Z. Wang. Cachemesh: a distributed cache system for world
wide web. In Proceedings International Web Caching Work-
shop, June 1997.

[16] D. Wessels. Squid internet object cache. Available at:
http://www.squid-cache.org/.

[17] D. Wessels and K. Claffy. Internet cache protocol (ICP) ver-
sion 2. Internet RFC 2186, September 1997.

[18] C. Williamson. On filter effects in web caching hierar-
chies. ACM Transactions on Internet Technology, 2(1):47–
77, February 2002.

[19] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. R.
Karlin, and H. M. Levy. On the scale and performance of co-
operative web proxy caching. In Proceedings ACM Sympo-
sium on Operating Systems Principles, pages 16–31, 1999.

[20] L. Zhang, S. Michel, K. Nguyen, A. Rosenstein, S. Floyd,
and V. Jacobson. Adaptive web caching: Towards a new
global caching architecture. In Proceedings International
Web Caching Workshop, 1998.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

